

Searches for Higgs Decays into New Light Bosons

Verena Martinez Outschoorn University of Massachusetts Amherst

> IAS HKUST January 16th, 2019

Higgs Boson Decays

- Many BSM theories predict additional decays
 - Higgs Portal models of dark matter
 - Theories of Neutral Naturalness
 - Models with an extended Higgs sector e.g. 2HDM+S, NMSSM

SM Higgs Boson Decays

Verena Martinez Outschoorn — January, 2019

BSM decays to $\sim < 25\%$

Exotic Higgs Decays

Higgs decays in the SM are suppressed by small Yukawa couplings, loops, or multi-body phase space

Dominant decay to b-quarks suppressed by tiny coupling $y_b \sim 0.017$

Motivations for New Light States

Naturalness

Chacko, Goh, Harnik 2005 Craig, Katz, Strassler, Sundrum 2015

Strong CP problem

More on axions later...

BSM Decays and Couplings

BSM Decays and Couplings

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4\mu$

- Strategy
 - Events with 4 muons

- Search for excess in pairs of similar mass $m_{1 \mu\mu} \sim m_{2 \mu\mu}$
- Main backgrounds bb and J/Ψ events

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4\mu$

Verena Martinez Outschoorn — January, 2019

JHEP 06 (2018) 166 arXiv:1802.03388 10

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2\tau$

Signal

JHEP 11 (2018) 018 arXiv:1805.04865

Verena Martinez Outschoorn — January, 2019

Strategy

- Events with 2 muons and 2 taus (e,μ,τ_h)
- Search for excess in dimuon spectrum
- Main backgrounds misidentified τ & ZZ

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2b$

Signal

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 2\mu 2b$

Signal

Higgs to Light Scalars: $h \rightarrow 2a \rightarrow 4b$

- 2HDM+S Models
 - Type II: MSSM-like, d_R and e_R couple to H_1 , u_R to H_2
 - Type III: leptonspecific, leptons/ quarks couple to $H_1/$ H₂ respectively
 - **Type IV:** flipped, with u_R , e_R coupling to H_2 and d_R to H_1

New calculations including quarkonia regions JHEP3(2018)178

From LHC Higgs XS WG on Exotic Decays

JHEP3(2018)178

Higgs to Light Scalars: Summary Results are model dependent \rightarrow assume BR(a \rightarrow XX)

Example benchmark model 2HDM+S Type I

ATL-PHYS-PUB-2018-045

Summary 2HDM+S

- Type I: all fermions couple to H₂
- **Type II:** MSSM-like, d_R and e_R couple to H₁, u_R to H₂
- Type III: leptonspecific, leptons/ quarks couple to H₁/ H₂ respectively
- Type IV: flipped, with u_R, e_R coupling to H₂ and d_R to H₁

Type II, $\tan \beta = 0.5$

m_{a} [GeV] Type II, tan $\beta = 5$

ATL-PHYS-PUB-2018-045

Summary 2HDM+S

- Type I: all fermions couple to H₂
- Type II: MSSM-like, d_R and e_R couple to H_1 , u_R to H_2
- Type III: leptonspecific, leptons/ quarks couple to $H_1/$ H₂ respectively
- **Type IV:** flipped, with u_R, e_R coupling to H₂ and d_R to H_1 ATLAS Preliminary

10

10

m_a [GeV]

m_a [GeV]

19

Higgs to Light Scalars: Summary

ATL-PHYS-PUB-2018-045

Analyses starting to probe interesting region
→ stay tuned for updates with full 13 TeV dataset

See presentation by M. Neubert at workshop last Friday

10⁻⁶

10⁻⁹

10⁻⁶

Cosmology

 10^{-3}

 m_a [GeV]

[Bauer, Neubert, Thamm: 1704.08207, 1708.00443, 1808.10323 (+Heiles)]

Verena Martinez Outschoorn — January, 2019

10³

ALP-like Signatures: $h \rightarrow 2a \rightarrow 2\gamma 2j$

Models with Exotic Decays to Vector Fields (Z_dZ_d)

- Models with additional $U(1)_D$ gauge symmetry predict a new vector field $(Z-dark, Z_d)$
- Phenomenologically, it has been used to explain the muon anomalous magnetic moment and anomalous cosmic ray spectra in experiments like PAMELA and AMS

exotichiggs.physics.sunysb.edu

arXiv:1312.4992

Verena Martinez Outschoorn — January, 2019

 \boldsymbol{a}

Higgs mixing

parameter

H.

BSM Decays and Couplings

- Many models motivating Higgs decays to LLPs, for example
 - NMSSM [Chang, Fox, Weiner 2005]
 - Hidden Valleys [Strassler, Zurek 2006; Han, Si, Strassler, Zurek 2007]
 - Twin Higgs [Chacko, Goh, Harnik 2005]
 - Fraternal twins [Craig, Katz, Strassler, Sundrum 2015]

See presentation by N. Craig at workshop last Thursday

Higgs to Light Scalars: h→2a→4b Long-Lived Interpretation

LLP Experimental Signatures

Long Lived Decays: $h \rightarrow displaced muons$

- Strategy
 - Search for displaced vertices (DV) in the muon system
 - No tracks in inner detector
 - Low backgrounds

In ATLAS can detect dimuon DVs in large decay volume

Verena Martinez Outschoorn — January, 2019 Phys. Rev. D 99, 012001 (2019) arXiv:1808.03057

LL Decays: $h \rightarrow$ displaced jets in muon system Signal Strategy Search for multitrack h displaced vertices in muon system **LLP** No tracks in inner detector nor calorimeter signals 2 DVs M $B_{\rm h} \rightarrow \chi \chi$ [pb] 10³ $\sigma_{\rm SM} \times (B_{\rm h \rightarrow \chi\chi} = 100\%)$ 10² $\sigma_{\rm SM} \times (B_{\rm h \rightarrow \chi\chi} = 10\%)$ × 10 % CL Upper Limit on σ 10^{-1} $\sigma \times (B_{h \rightarrow h})$ = 100%) [m_=100 GeV] 10⁻² 2 DVs + $\chi \rightarrow v b \overline{b}, m_{\chi} = 10 \text{ GeV} (\text{comb.})$ 10⁻³ **ATLAS** $\chi \rightarrow v b \overline{b}, m_{\chi} = 30 \text{ GeV} (\text{comb.})$ √s=13 TeV, 36.1 fb⁻¹ 2 prompt $\chi \rightarrow v b \overline{b}, m_{\chi} = 50 \text{ GeV} (\text{comb.})$ 10^{-4} vbb, $m_{ij} = 100 \text{ GeV} (2\text{MSVx})$ jets 95 10⁻² 10⁻¹ 10² 10^{3} 10 χ proper lifetime (c τ) [m] arXiv:1811.07370 Verena Martinez Outschoorn — January, 2019

31

LL Decays: $h \rightarrow$ displaced jets in calorimeter

Verena Martinez Outschoorn — January, 2019

arXiv:1811.02542

BSM Decays and Couplings

Invisible Decays

VBF

H

q

- Strategy → focus on VBF most sensitive
 - Search for dijet events with large rapidity gap $\Delta\eta(j_1,j_2)$ and large mass m_{jj} & MET
 - Major challenge for trigger
- Large backgrounds, mainly Z and W bosons -split into strong and EW components

35

Invisible Decays Summary

Verena Martinez Outschoorn — January, 2019

similar results from CMS arXiv:1809.05937

Future Prospects

Projections to HL-LHC and especially to future colliders shows major gains in sensitivity

Mixed modes largely uncovered at the LHC

current limit ■ HL–LHC ■ CEPC (5.6 ab⁻¹) 10⁻¹ CEPC* (5.6 ab⁻¹) BR(h→Exotics) 10⁻² 10⁻³ 10^{-4} $(bb)_{+ME_{T}}$ $(jj)_{+ME_{T}}$ $(\tau\tau)_{+ME_{T}}$ $bb_{+ME_{T}}$ $jj_{+ME_{T}}$ $(\tau\tau)_{+ME_{T}}$ (bb)(bb)(cc)(cc) (bb)(77) MET (ij)(_{YY}) (jj)(jj) (17)(17) (YY)(YY)

95% C.L. upper limit on selected Higgs Exotic Decay BR

arXiv:1612.09284 and CEPC CDR

BSM Decays and Couplings

Flavor Violating Couplings: Lepton Decays

JHEP 06 (2018) 001 arXiv:1712.07173

- Strategy
 - Search for lτ in multiple decay modes for the tau (lτ_l, lτ_{had})
 - Multivariate analysis including collinear mass distribution
- Large backgrounds, mainly Z→ττ

13 TeV: Br(H→μτ)<0.25% (0.25% expected) Br(H→eτ)<0.61% (0.37% expected)

Flavor Violating Couplings Summary

Lepton Couplings

CMS arXiv:1502.07400, arXiv:1607.03561, arXiv:1712.07173 ATLAS arXiv:1508.03372, arXiv:1601.03567, arXiv:1604.07737 LHCb: arXiv:1808.07135

95% C.L. upper limits on BR [%]

CMS arXiv:1410.2751, arXiv:1610.04857, arXiv:1712.02399 ATLAS arXiv:1403.6293, arXiv:1509.06047, arXiv:1812.11568

Verena Martinez Outschoorn — January, 2019

Quark Couplings

41

Summary & Outlook

=₋miss

More results expected soon with full 13 TeV dataset